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Fully developed incompressible turbulent pipe flow at bulk-velocity- and pipe-
diameter-based Reynolds number ReD = 44 000 was simulated with second-order
finite-difference methods on 630 million grid points. The corresponding Kármán
number R+, based on pipe radius R, is 1142, and the computational domain length
is 15R. The computed mean flow statistics agree well with Princeton Superpipe
data at ReD = 41 727 and at ReD =74 000. Second-order turbulence statistics show
good agreement with experimental data at ReD =38 000. Near the wall the gradient
of lnu+

z with respect to ln(1 − r)+ varies with radius except for a narrow region,
70 < (1 − r)+ < 120, within which the gradient is approximately 0.149. The gradient of
u+

z with respect to ln {(1 − r)+ + a+} at the present relatively low Reynolds number
of ReD = 44 000 is not consistent with the proposition that the mean axial velocity
u+

z is logarithmic with respect to the sum of the wall distance (1 − r)+ and an
additive constant a+ within a mesolayer below 300 wall units. For the standard case
of a+ = 0 within the narrow region from (1 − r)+ = 50 to 90, the gradient of u+

z with
respect to ln {(1 − r)+ + a+} is approximately 2.35. Computational results at the lower
Reynolds number ReD = 5300 also agree well with existing data. The gradient of uz

with respect to 1 − r at ReD =44 000 is approximately equal to that at ReD = 5300
for the region of 1 − r > 0.4. For 5300 <ReD < 44 000, bulk-velocity-normalized mean
velocity defect profiles from the present DNS and from previous experiments collapse
within the same radial range of 1 − r > 0.4. A rationale based on the curvature of
mean velocity gradient profile is proposed to understand the perplexing existence of
logarithmic mean velocity profile in very-low-Reynolds-number pipe flows. Beyond
ReD = 44 000, axial turbulence intensity varies linearly with radius within the range
of 0.15 < 1 − r < 0.7. Flow visualizations and two-point correlations reveal large-scale
structures with comparable near-wall azimuthal dimensions at ReD = 44 000 and 5300
when measured in wall units. When normalized in outer units, streamwise coherence
and azimuthal dimension of the large-scale structures in the pipe core away from the
wall are also comparable at these two Reynolds numbers.

1. Introduction
Fully developed incompressible turbulent flow through a smooth pipe is a canonical

problem in fluid mechanics. Celebrated experimental data sets by Nikuradse and
Laufer on mean and turbulence statistics for the pipe flow appeared more than a
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half-century ago, along with the classical complete similarity theory by Millikan on
logarithmic mean velocity distribution with universal coefficients for the intermediate
inertial sublayer. Those early studies were summarized in, for example, Hinze (1975).
Recently, the issue of mean pipe velocity profile has been revisited in a number
of experimental and theoretical investigations. Noticeably absent from the recent
examinations of the mean pipe flow velocity profile is direct numerical simulation
(DNS), which has played a vital role in the advancement of wall turbulence research
over the past two decades. To this end there is a need for new pipe flow DNS data at
Reynolds numbers substantially higher than those achieved previously. In the absence
of relevant and accurate DNS pipe flow data previous authors frequently invoked the
low-Reynolds-number DNS channel flow results in their studies on mean pipe flow
theory. This paper describes our pipe flow DNS statistics at ReD = 44 000 acquired
from a large-scale parallel computation. Simulation at a lower Reynolds number of
ReD = 5300 is also presented.

Previous representative DNS pipe flow work can be found in Eggels et al. (1994).
The Reynolds number used in Eggels et al. is ReD = 5300. Axial dimension of their
computational domain was 10R. Their computation was performed on a finite-
volume mesh of 96 × 128 × 256 along the r, θ, z directions, respectively. Orlandi &
Fatica (1997) and Fukagata & Kasagi (2002) simulated the same pipe flow as that
of Eggels et al. with a second-order finite-difference method. The turbulent pipe
flow at ReD = 5600 was computed by Loulou et al. (1997) with a hybrid B-spline
spectral method on a 72 × 160 × 192 mesh. Wagner, Huttl & Friedrich (2001) and
Veenman (2004) simulated the pipe flow at ReD = 10 300 with a finite-volume method
and a pseudo-spectral method, respectively. Flow and heat transfer computation
in a turbulent pipe flow was reported by Satake, Kunugi & Himeno (2000) for
ReD = 40 000. Their numerical approach is second-order finite-volume discretization.
They used a mesh size of 512 × 768 × 1024 along the r, θ and z directions, respectively.
The corresponding grid resolution was �z+ =15.4 and �(Rθ)+ = 8.6, and the
streamwise extent of their computational box was 15R.

Barenblatt, Chorin & Prostokishin (1997) proposed that, for smooth pipe flow,
the widely accepted universal logarithmic law should be replaced by an incomplete
similarity power law where the power exponent and multiplicative factor depend on
the flow Reynolds number. They showed that the theoretical overlap arguments that
led to the logarithmic law also support their power law at least as much as they
support the universal logarithmic law. In addition, Barenblatt et al. analysed the
classical Nikuradse pipe flow data for ReD > 4000 and found that they favour the
power law more than the logarithmic law. The coefficients for their proposed power
law were obtained by curve-fitting to the Nikuradse data. The suggested applicable
region for the power law is approximately from the top of the buffer layer (1−r)+ = 40
to 0.9R, covering almost the entire pipe flow cross-section. The idea that mean velocity
distribution in a turbulent pipe flow can be well approximated by a simple power-type
formula with Reynolds number dependent exponent is not new (see the discussion in
Hinze 1975). The point of Barenblatt et al. (1997) is that this power law representation
is more than an empirical coincidence.

Zagarola, Perry & Smits (1997) and Zagarola & Smits (1998) reported mean pipe
flow experimental data collected from the Princeton Superpipe facility, spanning a
range from ReD = 31 500 to 35 × 106. Adhering to the classical approach, they focused
on the overlap region above the buffer layer but below 1−r =0.1R or (1−r)+ = 0.1R+

instead of the much wider range in Barenblatt et al. (1997). R+ = uτR/ν is often
referred to as the Kármán number. Zagarola et al. (1997) emphasized the possible
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coexistence of a power law and a log law in the mean velocity distribution. Specifically,
for relatively low-Reynolds-number flows in which R+ < 5000, there exists a power
law within the region of 50< (1 − r)+ < 0.1R+. For higher-Reynolds-number flows in
which R+ > 5000, there is a power law for 50< (1 − r)+ < 500, followed by a log law
for 500 < (1 − r)+ < 0.1R+.

Barenblatt & Chorin (1998) found that the Princeton Superpipe data are consistent
with the Nikuradse data to the extent of ReD < 1.0 × 106. They commented that the
experimental data of Zagarola et al. (1997) beyond ReD = 1.0 × 106 are affected by
surface roughness. However, Smits & Zagarola (1998) stated that effect of roughness
on their data is negligible for ReD < 36 × 106.

Wosnik, Castillo & George (2000) (see also Oberlack 2001) proposed that, inside
the overlap region of 30 < (1 − r)+ < 0.1R+, the mean velocity profile is logarithmic
with respect to (1 − r)+ + a+, where a+ is an offset parameter and is approximately
−8 for pipe flow. The role of a+ was related to a mesolayer existing in the region of
30 < (1 − r)+ < 300. Wosnik et al. suggested that their mesolayer theory is applicable
for R+ as low as 180. They disputed the extended power law of Barenblatt & Chorin
(1998), and they also disagreed with the limited power law of Zagarola et al. (1997).
Wosnik et al. believed that the experimental data of Zagarola et al. (1997) are free of
surface roughness effects at high-Reynolds-number range, but commented that inside
the mesolayer the Princeton Superpipe data may not be accurate. Wosnik et al. (2000)
attempted to validate their theory by evaluating the velocity gradients but found that
the noisy mean velocity gradient profiles calculated from the existing experimental
pipe flow data are not helpful in their validation effort.

Perry, Hafez & Chong (2001) emphasized the importance of applying corrections
to pipe flow experimental data with respect to the effect of turbulence intensity as
well as the effect of probe size. They conjectured that the data of Zagarola et al.
(1997) and Zagarola & Smits (1998) may be influenced by surface roughness. Based
on these corrections, Perry et al. (2001) pointed out that the classical mean velocity
theory for turbulent pipe flow is still valid and the limited power law from Zagarola
et al. (1997) may be due to data processing error.

McKeon et al. (2004a) and Morrison et al. (2004) repeated the Superpipe
experiments of Zagarola & Smits (1998) with improved equipment and procedure.
Their new experimental data affirmed the limited power law of Zagarola & Smits
(1998), but with a narrower applicable range of 50 < (1 − r)+ < 300. The log law
further away from the wall was also verified and was found to be valid for
600 < (1− r)+ < 0.12R+. Implicit in their conclusion is that, for low Reynolds number
flows in which 0.12R+ < 600, there is no log law and only the power law applies.
McKeon et al. (2004a) also confirmed that the effect from surface roughness in the
Princeton Superpipe data is negligible.

Wei et al. (2005) analysed the mean momentum balance equation for turbulent pipe
flow, among other wall-bounded flows. Instead of comparing the relative magnitude
of viscous and shear stresses, they noted that gradients of these stresses are more
relevant. Wei et al. found that existing data and their theoretical arguments support
the notion of two logarithmic regions.

It is difficult for pipe flow DNS, at the present time, to enter directly into the debate
on power law versus log law in the inertial sublayer, because one would need to exceed
ReD = 230 000 or R+ =5000 by a wide margin to have a meaningful inertial sublayer.
Our DNS results at ReD =44 000 (R+ = 1142) exhibit limited power-type behaviour
for 70 < (1 − r)+ < 120, and at the same time approximate logarithmic behaviour for
50 < (1 − r)+ < 90.
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The established logarithmic dependence of u+
z on (1 − r)+ in very-low-Reynolds-

numbers turbulent flows, R+ = 180 for example, is confusing and has not been well
explained in previous studies. In such flows two of the basic assumptions involved
in Millikan’s arguments are not applicable, namely, universal inner scaling of u+

z on
(1 − r)+ near the wall and universal outer scaling of [uz(r = 0) − uz]/uτ on 1 − r away
from the wall (defect law). In this work we argue that the approximate logarithmic
variation of u+

z on (1 − r)+ is dictated by the nature of the curvature of the mean
velocity gradient profile.

2. Details of the present computation
2.1. Governing equations

We consider incompressible, fully developed turbulent flow through a smooth pipe
with radius R. The governing equations are the continuity and Navier–Stokes
equations for incompressible flow in cylindrical coordinates:
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In the present study, the unit length scale is pipe radius R, and the unit velocity scale is
ubulk, which is defined as the ratio of mean mass flow rate and pipe cross-sectional area.
The unit time scale is therefore R/ubulk. The imposed streamwise pressure gradient
∂p/∂z is adjusted during the simulation to maintain constant mass flow rate, i.e.
ubulk = 1.0. An overbar denotes ensemble averaging, superscript + refers to normalized
quantities by friction velocity uτ for velocity, and by viscous wall unit ν/uτ for
distance; r is the radial coordinate measured from pipe axis, z is the flow axial
direction, and θ is the azimuthal coordinate. Since the unit length scale is pipe radius
R, 1 − r represents distance from the wall.

2.2. Numerical method

The computer program solves the governing equations (2.1)–(2.4) for instantaneous
velocity components (ur, uθ , uz) and pressure p as functions of (r, θ, z, t) in a
cylindrical coordinate system with second-order finite-difference method. In the
computational mesh velocity components are staggered with respect to pressure;
refer to figure 4.5 of Pierce & Moin (2001). Conservation of kinetic energy in the
inviscid limit by the numerical scheme is facilitated by the use of staggering. In
the immediate vicinity of pipe axis all quantities except for ur are staggered in the
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radial direction with respect to the centreline, i.e. they are located at �r/2 from
the centreline, and ur is collocated with the centreline. Centreline conditions are
therefore not required for any of the variables except for ur . Centreline condition
for ur is obtained by averaging corresponding values across the centreline (Pierce &
Moin 2001). Derivatives of quantities that are staggered with respect to the centreline
can be obtained by differencing opposing values across the centreline, accounting
for reversals in the directions of radial unit vector through the centreline. No-slip
conditions were used for velocities at the wall. Periodic boundary conditions are
applied in the streamwise and azimuthal directions for the fully developed turbulent
pipe flow. The time advancement method used to solve the time-dependent, three-
dimensional constant density Navier–Stokes equations is the second-order fractional
step method (Kim & Moin 1985). Convection and diffusion terms that involve
derivatives in the radial direction or azimuthal direction are treated implicitly. A
third-order Runge–Kutta scheme is used for terms treated explicitly and a second-
order Crank–Nicolson scheme is used for terms treated implicitly. Poisson equation
for pressure is solved by Fast Fourier Transform along the homogeneous directions.
Details of the algorithm were described in full in Akselvoll & Moin (1996a) and
Pierce & Moin (2001, 2004).

2.3. Computational details at ReD = 5300

The experimental study of Kim & Adrian (1999) suggested the existence of very
large-scale motions in the form of long regions of outer-layer streamwise fluctuations.
The maximum wavelength of the large-scale motion was found to be 12R to 14R.
More recent work by the same group reported in Guala, Hommema & Adrian (2006)
modified the maximum wavelength to a range from 8R to 16R. Morrison et al. (2004)
indicated that the maximum wavelength in their pipe flow is approximately 10R. In
view of these findings, a value of 15R was chosen for computational domain length in
the present numerical study at both Reynolds numbers. This computational domain
is 50% longer than that used by Eggels et al. (1994).

The finite-difference grid size used in the present simulation at ReD = 5300 is
256 × 512 × 512 along the r, θ and z directions, respectively. The resolution along
the axial direction is �z+ =5.31 or �z = 0.0293. Along the azimuthal direction
the maximum grid spacing is attained at the wall (r = R) with �(Rθ)+ = 2.22
or �(Rθ) = 0.0123. The minimum and maximum wall-normal grid spacings are
9.203 × 10−4 and 9.083 × 10−3, respectively. In wall units, these correspond to 0.167
and 1.647. The maximum wall-normal grid spacing is located at r = 0.409. At the pipe
centreline the wall-normal grid spacing is 1.845 × 10−3. The computer program was
made parallel using the Message Passing Interface (MPI) library. The simulation was
performed using 128 processors on 16 IBM 8-way P655+ nodes. The initial velocity
field was random. In the first 700 iterations, the maximum axial CFL component was
fixed at a small value of 0.05 and the corresponding time step �t was approximately
0.0009. This was to allow the start-up effect associated with the imposed unrealistic
initial velocity field to diminish. After the first 700 iterations, the computational time
step was fixed at �t = 0.015 and the maximum allowed axial CFL component was set
at 1.0. The actual computed axial CFL component fluctuates around 0.78. The radial
and azimuthal CFL components can be rather large because these two directions
are treated implicitly; see also Akselvoll & Moin (1996b). Statistics were collected
for 20 000�t beginning from 19 700�t . The sampling time duration is equivalent
to 300R/ubulk, enough to allow a particle to travel 20 times through the pipe axial
dimension at the bulk velocity. Total simulation time duration for ReD = 5300 was



86 X. Wu and P. Moin

585R/ubulk. In addition to averaging in time, the statistical sample was enhanced by
averaging in the two homogeneous directions (z, θ).

2.4. Computational details at ReD = 44 000

The finite-difference grid size used in the current computation at ReD =44 000 is
300 × 1024 × 2048 along the r, θ and z directions, respectively. The total number of
grid points is 200 times larger than that used by Eggels et al. (1994). Resolution along
the axial direction is �z+ = 8.37 or �z = 0.00732. Along the azimuthal direction
maximum grid spacing is achieved at the wall (r = R) yielding �(Rθ)+ = 7.01
or �(Rθ) = 0.00614. The minimum and maximum wall-normal grid spacings are
3.578 × 10−4 and 9.892 × 10−3, respectively. In wall units, these correspond to 0.41
and 11.3. The maximum wall-normal grid spacing is located at r = 0.406 rather than
at the centreline. The first layer of grid points in the staggered mesh system is
located at 0.205 wall units away from the pipe surface. There are 108 grid points
located near the wall between 0< (1 − r) < 0.1, and 44 grid points near the centreline
between 0.9 < (1 − r) < 1.0. At the pipe centreline the wall-normal grid spacing is
1.435 × 10−3.

The simulation was performed using 1024 processors on 128 IBM 8-way P655+
nodes. Each restart data file has a size of 25GB. Initial conditions are the same as those
used in the ReD = 5300 computation. During the first 400 iterations, the maximum
axial CFL component was fixed at a small value of 0.05 and the corresponding
time step �t was approximately 0.0002. This is again to accommodate start-up
effects associated with the imposed unrealistic initial velocity field. After the first 400
iterations, the computational time step was fixed at �t = 0.005 and the maximum
allowed axial CFL component was set to be 1.25. The actual computed axial CFL
component fluctuates during the simulation around 1.0. Statistics were collected
for 30 000�t starting from 20 400�t . The sampling time duration is equivalent to
150R/ubulk, enough to allow a particle to travel 10 times through the pipe axial
dimension at the bulk velocity. Total computed time duration was 250R/ubulk.

3. Statistics at ReD = 5300

Reliability of the current parallel computer code may be demonstrated partially
through comparison with existing pipe flow DNS results at low Reynolds numbers.
Previously, Toonder & Nieuwstadt (1997) compared their LDV experimental data at
ReD = 4900 with the DNS of Eggels et al. (1994) at ReD = 5300. Their figures indicate
that, among their presented quantities, the two sets of results agree quite well. Figures 1
to 5 present a comparison of the present mean and second-order statistics with the
results from Eggels et al. at ReD =5300 and with those from Loulou et al. at a slightly
higher Reynolds number of ReD = 5600. The present friction velocity uτ is 0.06844ubulk,
compared to 0.06789ubulk in Eggels et al. From figure 1 it is easy to see that the grid
resolution used by Eggels et al. in the near-wall region is coarser than in the present
simulation. The first two grid points in their calculation were located at (1 − r)+ ≈ 1
and 2.8, respectively. Turbulence intensities from the present DNS and that of Eggels
et al. agree well, especially considering the differences in the computational domain
size and grid resolution. The largest discrepancy is found in the peak value of
azimuthal turbulence intensity u

′+
θ,r.m.s.. Toonder & Nieuwstadt (1997) did not present

comparison with Eggels et al. on the quantity of u
′+
θ,r.m.s.. Figure 5 shows that the

agreement between the current turbulent shear stress u
′
zu

′
r

+
with that of Eggels et al.
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Figure 1. Mean axial velocity u+
z as a function of (1 − r)+. Solid line: present DNS at

ReD =5300; dashed line: Eggels et al. (1994) at ReD = 5300; dotted line: Loulou et al. (1997)
at ReD =5600.
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Figure 2. Axial turbulence intensity u
′+
z,r.m.s. as a function of (1 − r)+. Solid line: present DNS

at ReD = 5300; dashed line: Eggels et al. (1994) at ReD = 5300; dotted line: Loulou et al.
(1997) at ReD = 5600.

(1994) is excellent. The small discrepancies in turbulence intensities between the two
simulations at ReD = 5300 are all consistent with the expected dependencies of these
quantities on the grid resolution. In coarse DNS or LES calculations the streamwise
component of turbulence intensity is amplified, whereas the other components are
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Figure 3. Wall-normal turbulence intensity u
′+
r,r.m.s. as a function of (1−r)+. Solid line: present

DNS at ReD = 5300; dashed line: Eggels et al. (1994) at ReD =5300; dotted line: Loulou et al.
(1997) at ReD =5600.
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Figure 4. Azimuthal turbulence intensity u
′+
θ,r.m.s. as a function of (1 − r)+. Solid line: present

DNS at ReD = 5300; dashed line: Eggels et al. (1994) at ReD =5300; dotted line: Loulou et al.
(1997) at ReD =5600.

lower than those in resolved calculations. The present simulation has finer resolution
than in Eggels et al. and has lower u

′+
z,r.m.s. and higher u

′+
θ,r.m.s. and u

′+
r,r.m.s. as well as

u
′
zu

′
r

+
. The turbulence intensities from Loulou et al. (1997) at R+ = 190 agree very

well with the present results at R+ = 180 in the near-wall region, but are slightly
higher in the pipe core, possibly due to the larger Reynolds number used in their
simulation.
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Figure 5. Turbulent shear stress u
′
zu

′
r

+
as a function of (1 − r)+. Solid line: present DNS at

ReD =5300; dashed line: Eggels et al. (1994) at ReD = 5300; dotted line: Loulou et al. (1997)
at ReD =5600.

4. Statistics at ReD = 44 000

4.1. Simulation error and validation

Note that in this study the unit length is radius R = 1 and the unit velocity is ubulk = 1.
Unless otherwise stated, all the results are therefore automatically normalized by
proper combinations of R and ubulk.

The parallel code has been verified through comparison with previous DNS at
ReD = 5300. Assessment of the quality of the simulation statistics at ReD = 44 000
is made by considering the degree to which the spatial- and time-averaged DNS
statistics satisfy the mean momentum transport equations. Reynolds-averaged mean
transport equations for the fully developed incompressible turbulent pipe flow
are
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respectively, see Hinze (1975). At each radial station r the residuals of equations
(4.1) and (4.2) are computed using the present DNS statistics. If there were no
numerical error in the solution of the three-dimensional, time-dependent Navier–
Stokes equations and if the statistical sample size is sufficiently large, the summed
deviation from zero should vanish. From figure 6 it can be seen that the residual
of the mean axial momentum equation is less than 8 × 10−5u2

bulk
/R where the larger

values are mostly located near the pipe wall. Relatively large deviation value is also
seen right at the pipe axis, which arises due to the imposed centreline boundary
condition. The deviation values shown in the figures are not the raw percentage
errors in the computed velocity statistics. Rather, they reflect errors in the derived
radial gradients of mean velocity, turbulent shear stress and viscous shear stress.
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Figure 6. Deviation of the DNS statistics at ReD =44 000 from the Reynolds-averaged mean
axial momentum transport equation (4.1) as a function of r . Normalization is with respect to
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The maximum residual associated with (4.2) was found to be 0.0013 attained in the
immediate vicinity of the pipe axis, but away from the axis the error is generally less
than 1.0 × 10−5. Simulation quality at ReD = 44 000 is further assessed by checking the
degree that the present DNS statistics satisfy the integrated mean axial momentum
equation, (

−ν
duz

dr
+ u

′
zu

′
r

)+

− r

R
= 0 (4.3)

(see Hinze 1975). The results are shown in figure 7 with a maximum absolute error
of less than 0.0025. This error is actually the deviation of the total shear-stress
distribution from the theoretical linear profile presented in figure 22. Also shown in
the figure is the percentage error of the computed total shear stress relative to the
local theoretical value. The maximum error relative to local theoretical value is less
than 2%.

The computed wall shear stress τw is 2.695 × 10−3, which gives a Kármán number
of R+ = 1142. The corresponding friction factor f = 8u2

τ /u
2
bulk

is 0.02156. The present
friction factor results at ReD = 44 000 and 5300 are plotted in figure 8 together with
the experimental data of McKeon et al. (2004b), Durst, Jovanovic & Sender (1995),
Toonder & Nieuwstadt (1997) and the DNS data of Loulou et al. (1997) in the
low-Reynolds-number range of ReD < 80 000.

The computed mean velocity profile at ReD =44 000 also agrees well with the two
sets of Princeton Superpipe data: at ReD =41 727 (uncorrected) from Zagarola &
Smits (1998) and at ReD = 74 000 from McKeon et al. (2004a). See figure 9 in wall
units and figure 10 in the outer units. The original u+

z data of Zagarola & Smits
(1998) for (1− r)+ < 30 are obviously too high but are included here for completeness.
Convergence history of the mean axial velocity statistics with increasing sample size
is also included in figure 10. Additional convergence history results can be found in
figure 21. As expected, both the present DNS and the data of Zagarola & Smits show
that in the central region of 0.9 < (1 − r) < 1.0, uz has small variation with radial
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Figure 8. Friction factor f as a function of Reynolds number. Solid circle: present DNS; open
circle: Princeton data of McKeon et al. (2004b); diamond: Loulou et al. (1997); square: Durst
et al. (1995); triangle: Oregon data of McKeon et al. (2004b); cross: Toonder & Nieuwstadt
(1997).

distance; there are no data points from McKeon et al. in this region. Normalized
mean velocity defect [uz(r = 0) − uz]/uτ is presented in figure 11. Since the defect
profiles at different Reynolds numbers do not collapse, it can be concluded that
universal velocity defect law does not hold in the range of 5300< ReD < 44 000.
Zagarola & Smits (1998) also noted the poor collapse of [uz(r = 0)−uz]/uτ profiles at
different Reynolds numbers, especially for the region of (1 − r) < 0.3R. The absence
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+: McKeon et al. (2004a) at ReD = 74 000; circle: Zagarola & Smits (1998) at ReD = 41 727.
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Figure 10. Mean velocity uz/ubulk as a function of (1 − r). Solid line: present DNS at
ReD = 44 000, sampled from 20 000�t to 50 000�t; dotted line: sampled from 20 000�t to
40 000�t; dashed line: sampled from 20 000�t to 30 000�t; +: McKeon et al. (2004a) at
ReD = 74 000; circle: Zagarola & Smits (1998) at ReD = 41 727.

of universal velocity defect law in turn invalidates the direct application of Millikan’s
derivation of log law to pipe flows with ReD < 44 000.

4.2. Mean velocity gradient

Gradient of the mean axial velocity with respect to radial coordinate is shown in
figure 12 for ReD =44 000 and 5300, together with the experimental data of Toonder
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Figure 12. Mean velocity gradient duz/d(1 − r) as a function of (1 − r). Solid line with
circle: present DNS at ReD =44 000; solid line with diamond: present DNS at ReD = 5300;
dashed line: hyperbolic curve 2.35uτ /(1 − r) at ReD = 44 000; dotted line: hyperbolic curve
2.76uτ /(1 − r) at ReD = 5300; plus: Toonder & Nieuwstadt (1997) at ReD = 24 580.

& Nieuwstadt (1997) at ReD =24 580. Apparently it is a challenge to obtain smooth
experimental mean velocity gradient data. In turbulent pipe flow starting from the
wall, the radial profile of duz/d(1 − r) experiences convex-to-concave and concave-
to-convex curvature changes. Right at the pipe surface duz/d(1 − r) has a narrow
plateau because inside the viscous sublayer mean velocity gradient is constant. For
example, the narrow plateau at ReD =44 000 has a value of 59.3 at the wall. This



94 X. Wu and P. Moin

0.2 0.4 0.6 0.8 1.00

0.1

0.2

0.3

0.4

0.5

1 – r

[u
z(

r 
=

 0
)–

u z
]/

u b
ul

k

Figure 13. Mean velocity defect [uz(r = 0) − uz] /ubulk as a function of (1 − r). Solid line:
present DNS at ReD = 44 000; dotted line: present DNS at ReD = 5300; circle: Zagarola &
Smits (1998) at ReD = 31 577; cross: Zagarola & Smits (1998) at ReD =41 727; diamond:
Durst et al. (1995) at ReD = 7442; plus: Toonder & Nieuwstadt (1997) at ReD = 24 580.

results in a convex curvature in the immediate vicinity of the wall when viewed from
origin of figure 12. In the central portion of the pipe flow between the wall and the
pipe axis there is a region within which the radial variation of duz/d(1 − r) is rather
small. In order for a continuous, monotonically decreasing curve that begins with
a very narrow convex plateau to achieve such a slow radial variation in the core
region, the profile must experience a concave curvature as shown in the figure. At
the pipe axis duz/d(1 − r) vanishes. To satisfy this constraint the radial profile must
subsequently transition from concave to convex as the pipe axis is approached. Also
shown in the figure are curves of 2.35uτ/(1−r) for ReD = 44 000 and 2.76uτ/(1−r) for
ReD = 5300. They are tangent to the corresponding −duz/dr profile at a point in the
concave segment. The family of hyperbolic concave curve const./(1−r) asymptotes the
two coordinate axes. The degree of concaveness and the asymptotic rate depend upon
the constant. It is also very interesting to note from figure 12 that for 1 − r > 0.4 the
gradient duz/d(1 − r) at ReD = 44 000 and at ReD =5300 nearly collapse, suggesting
that in the pipe central region duz/d(1 − r) can be considered as a function of radius
only with weak Reynolds number dependence. The collapse of mean velocity gradient
in figure 12 suggests that the mean velocity defect profiles for 5300<ReD < 44 000
should also collapse when normalized by the default unit velocity scale ubulk. This
is verified and confirmed in figure 13 using the present results and four sets of
experimental data in the same low-Reynolds-number range. Zagarola & Smits (1998)
proposed scaling the mean velocity defect with uz(r =0) − ubulk. We found that their
scaling works reasonably well for the four sets of data in figure 13 with ReD > 24 580.

4.3. Comparison with existing theories

The theory put forward by Wosnik et al. (2000) argues in favour of a logarithmic
mean velocity distribution inside a mesolayer between 30 < (1 − r)+ < 300 for all
Reynolds numbers if a suitable parameter a+ is added to (1 − r)+. They reported
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z /dln {(1 − r)+ + a+} as a function of (1 − r) from the present

DNS. Solid line: a+ = 0 at ReD = 44 000; dotted line: a+ = − 8 at ReD = 44 000; dashed line:
a+ = 0 at ReD =5300.

that existing DNS and experimental data for 180< R+ < 5.3 × 105 are in agreement
with the theory. In figure 14 the gradient of u+

z with respect to ln {(1 − r)+ + a+} is
plotted as a function of (1 − r). A blip located near (1 − r) = 0.6 is seen in figure 14
for both Reynolds numbers. In sections on computational details we reported that
the maximum wall-normal grid spacing is located at r = 0.4087 for ReD =5300 and
r = 0.4062 for ReD =44 000. The blip is associated with the piecewise-linear grid
point distribution along the radial direction. It is not visible in the velocity gradient
diagram of figure 12 but accentuated in the current scale. The overall variation
has two ascending and two descending portions with one sharp peak and two
gently inflectional regions. At the higher Reynolds number, starting from the wall
du+

z /d ln(1 − r)+ = (1 − r)+du+
z /d(1 − r)+ increases from 0 at the wall to the first

peak around (1 − r)+ = 10. This ascent can be explained with the usual law of the
wall u+

z = (1 − r)+ inside the viscous sublayer. Because du+
z /d(1 − r)+ is constant the

product has to increase linearly with (1 − r)+. For the standard case of a+ = 0 at
ReD = 44 000, within the narrow range of 50 < (1 − r)+ < 90, du+

z /d ln(1 − r)+ attains
a local minimum and varies slowly between 2.4 and 2.35, and may therefore be
considered to be approximately constant. At ReD =5300 there exists a short region of
40 < (1 − r)+ < 80 with a local minimum value of 2.76 in du+

z /d ln(1 − r)+. Figure 14
also shows that for the case of a+ = − 8 as suggested by Wosnik et al. (2000), the
narrow constant du+

z /d [ln(1 − r)+ + a+] region merely shifts closer to the wall. At
a+ = − 16 the constant region disappears.

In figure 15 we plot d lnu+
z /d ln(1−r)+ as a function of (1−r) from the present DNS

at ReD = 44 000 tand 5300. The overall variation is qualitatively similar to those shown
in figure 14 with two ascending and two descending regions. At the higher Reynolds
number the profile attains a near-constant value of 0.149 only within a very narrow
region of 70 < (1 − r)+ < 120. We therefore conclude that the current mean velocity
results at ReD =44 000 exhibit limited rather than extended power-type behaviour.
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z /dln(1 − r)+ as a function of (1 − r) from the present DNS.

Solid line: ReD = 44 000; dashed line: ReD = 5300.

4.4. Rationale for logarithmic u+
z at low Reynolds numbers

Over the narrow range of (1 − r)+ = 50 to 90, the present u+
z at ReD = 44 000 can be

approximated by a logarithmic formula with respect to (1 − r)+. This is consistent
with previous low-Reynolds-number DNS channel and pipe flow studies. However,
it is important to emphasize that this narrow logarithmic slope region is not the
one implied by the classical complete similarity logarithmic scaling law. Universal
velocity defect law does not hold at such low-Reynolds-number flows, and there is
a lack of distinct separation between inner and outer length scales. A number of
recent pipe flow studies (Zagarola et al. 1997, McKeon et al. 2004a, Perry et al. 2001,
Barenblatt et al. 1997) rule out the applicability of a logarithmic scaling theory for
low-Reynolds-number flows in which R+ < 5000. The question then arises whether
the logarithmic slope region found in flows with Reynolds number as low as R+ =180
is a mere coincidence with a power-type profile or a physical necessity dictated by
the flow. We provide the following two somewhat related rationales. First of all,
based on the discussions on figure 12 there is little doubt that the radial profile of
du+

z /d(1 − r)+ consists of a narrow convex plateau, an extended concave portion,
and a final convex segment. It is trivial to show that one can always find a constant
such that the concave, hyperbolic curve const/(1 − r)+ is tangent to the concave
segment of the velocity gradient at some point. The near-equality of const/(1 − r)+

and du+
z /d(1 − r)+ near the tangent point translates into a logarithmic dependence

of u+
z on (1 − r)+ inside this region. The constant is directly related to the slope of

the logarithmic profile. A higher value of the constant results in a less steep concave
hyperbolic curve and slower asymptotic rate to the two axes: see figure 12. This easily
explains the dependence of the Kármán constant 1/κ on Reynolds number 2.76 at
R+ = 180 and 2.35 at R+ = 1142. Of course, this reasoning does not rule out the
possibility of multiple tangent points between const/(1 − r)+ and du+

z /d(1 − r)+ in
the concave segment.

From a slightly different perspective, we can explain the logarithmic mean velocity
profile by considering the variation of du+

z /dln(1 − r)+ = (1 − r)+du+
z /d(1 − r)+. The
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first descending region in figure 14 together with the second ascending region in
turn demands a local minimum of du+

z /d ln(1 − r)+ in-between. A local inflectional
minimum region of du+

z /d ln(1− r)+ would manifest itself as a logarithmic range on a
u+

z versus ln(1 − r)+ diagram. The first descent occurs because mean velocity gradient
du+

z /d(1 − r)+ experiences a precipitous drop slightly away from the wall. Linear
increase of the multiplier (1 − r)+ is not enough to compensate for the rapid decrease
in the mean velocity gradient (figure 12). Away from the immediate vicinity of the
wall starting from (1− r) ≈ 0.15, figure 12 indicates that the precipitous drop of mean
velocity gradient is replaced by a mild decrease. Linear increase in the multiplier
(1 − r)+ over a sub stantial radial range is now able to compensate the mild decrease
of du+

z /d(1 − r)+. Therefore, further increase in the value of radial coordinate 1 − r

causes the gradient term du+
z /d ln(1− r)+ to experience the second ascent. The second

descent is because the mean velocity gradient at the pipe axis is zero.

4.5. Second-order turbulent statistics

Turbulence intensities normalized by uτ in the near-wall region are presented in
figure 16 together with the data of Toonder & Nieuwstadt (1997) at ReD = 24 580.
The maximum value of u

′+
z,r.m.s. is located in the region of 14 � (1− r)+ � 15, the same

as Laufer’s data at a Reynolds number 10 times higher than the present ReD (Hinze
1975). This is also the peak region reported by Eggels et al. (1994) at a Reynolds
number only 12 % of the present ReD . The maximum value of u

′+
z,r.m.s. from the present

simulation is 2.82. Morrison et al. (2004) reported a large degree of variation in the
peak value of u

′+
z,r.m.s. with only a slight change in Reynolds number: from 2.56 at

ReD = 55 000 to 2.93 at ReD = 75 000. Variations of the three normalized turbulence
intensities with the outer coordinate 1 − r are shown in figure 17. In addition to
the data of Toonder & Nieuwstadt, also plotted in the figure are the experimental
data of Lawn (1971) at ReD = 38 000, a Reynolds number close to the present DNS.
The comparison is quite satisfactory. Hinze (1975) commented that although the
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turbulence intensities obtained by Lawn are broadly similar to those of Laufer with
a maximum difference of less than 15 %, the main discrepancies are found for data
taken near the axis of the pipe rather than near the pipe wall.

In figure 17 the DNS profile of u
′

z,r.m.s. bends sharply from 1−r = 0.05 to 0.1, forming
a knee point. Associated with the knee point is a nearly perfect linear distribution of
u

′

z,r.m.s. with 1−r across a substantial radial range 0.15 < 1−r < 0.7. From 1−r = 0.9 to

the pipe centreline u
′

z,r.m.s. has very small variation with radial distance. The averaged

curve of u
′

z,r.m.s. given by Lawn (1971) from his experimental data on pipe flow
at several different Reynolds numbers is also a nearly perfect straight line in the
region of 0.1 < 1 − r < 0.8; see the figure 5 of Lawn (1971). The linear dependence of
u

′

z,r.m.s. on radius only starts to appear when the Reynolds number is above certain
relatively low threshold values. For example, the profile at ReD = 5300 shown in
figure 2 does not exhibit any indications of knee or linear dependence on 1 − r . The
strong linearity of streamwise turbulence intensity in turbulent pipe flow over the
region of 0.15 < 1 − r < 0.7 is reinforced by figure 18, in which the present results are
plotted together with the experimental data of Perry et al. (1986) from ReD = 75 000 to
200 000. Data from Morrison et al. (2004) are also shown in the figure. The existence
of such a linear axial turbulence intensity profile over a significant portion of pipe
cross-section may have been overlooked in previous turbulent pipe flow studies. The
appearance of knee points in turbulence intensity profiles is suggestive of distinctive
structural zones. See the recent study of Wu et al. (2006) and references therein on
knee points and the related concept of internal layer. Note that the internal layer
concept is applicable only for developing non-equilibrium flows in which the mean
velocity is inflectional due to the imposition and relaxation of strong perturbations. In
equilibrium-fully-developed-turbulent pipe flow the mean velocity profile is of course
not inflectional. But at moderately high Reynolds numbers the wall-normal gradient
of mean velocity possesses a strong bending where the sharp drop of duz/d(1−r) with



Mean velocity characteristics in turbulent pipe flow 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5

1.0

1.5

2.0

2.5

3.0

u′
z+

, r
.m

.s

1 – r

Figure 18. Axial turbulence intensity as a function of 1 − r . Solid line: present DNS at
ReD =44 000; open circle: Morrison et al. (2004) at ReD = 75 000; all other line and symbols:
Perry et al. (1986) from ReD = 75 000 (solid circle) to ReD = 200 000 (diamond).

0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

p′+r.m.s

1 – r

Figure 19. Intensity of pressure fluctuation p
′+
r.m.s. as a function of (1−r) from the present DNS.

Solid line: ReD = 44 000; dotted line: ReD = 5300; circle: Loulou et al. (1997) at ReD = 5600.

radius is replaced by a more gentle decrease: see figure 12. Statistically this corresponds
to the location of knee point in u

′

z,r.m.s.(r). In this sense, the enhanced distinctiveness
of the wall layer in fully developed pipe flow with increasing Reynolds number bears
a certain resemblance to an internal layer found in non-equilibrium flows.

Figure 19 shows the intensity of pressure fluctuation p
′+
r.m.s. as a function of (1 − r)

from the present study. With the increase of Reynolds number from 5300 to 44 000
the wall value changes from 1.7 to 2.5, and the peak location also shifts towards
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Figure 20. Mean pressure 2 [p − p(r = 0)] /u2
τ as a function of (1 − r) from the present

DNS; Solid line: ReD = 44 000; dotted line: ReD = 5300.

the wall. The present results at the lower Reynolds number agree well with those of
Loulou et al. (1997). Equation (4.2) suggests that mean pressure distribution along the
radial direction is important for the analysis of momentum transport. The normalized
mean pressure 2[p − p(r =0)]/u2

τ as a function of (1 − r) is plotted in figure 20 with
the reference pressure located at the pipe axis. As indicated in the figure, there is a
sharp radial pressure gradient close to the wall. At ReD = 44 000, mean pressure is
the lowest in the region of 0.1 < 1 − r < 0.2. From there the mean pressure increases
monotonically towards the wall and towards the pipe axis. The symmetry condition
at the pipe axis is satisfied reasonably well with negligible pressure gradient. It is also
evident from figures 19 and 20 that the peak of r.m.s pressure fluctuation is located
in the region with the highest mean radial pressure gradient. The offset of peak r.m.s
pressure fluctuation location away from the wall is simply due to the fact that mean
radial pressure gradient at the wall is small.

Turbulent and viscous shear-stress profiles are presented in figures 21 and 22.
Convergence history of the statistics is also shown. Based on the results, it was found
that the ratio between turbulence shear stress and turbulence kinetic energy u

′
zu

′
r/q

2

has a plateau of 0.136 across the range of 0.1 < 1 − r < 0.55; the ratio of turbulence
shear stress to mean velocity gradient u

′
zu

′
r/[duz/d(1 − r)] attains a maximum value

0.0033 at 1 − r = 0.4. Although the present turbulence intensities at ReD =44 000
differ little from the data of Toonder & Nieuwstadt (1997) at ReD = 24 580 (figure 17),
there is a substantial variation of turbulent shear-stress profiles at these two Reynolds
numbers.

4.6. Budgets for the mean flow transport equations

Detailed data on budget terms of the mean momentum transport equations are
useful in theoretical studies on mean pipe flow velocity profile. Distributions of the
individual terms appearing in equation (4.1) for the uz transport equation are shown in
figure 23 at ReD = 44 000. The residual balance of all the terms was already presented
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in figure 6 and the absolute maximum error is 7.82 × 10−5u2
bulk

/R. We found that in
the region of 3 < (1 − r)+ < 15, the viscous term and the turbulent shear-stress term
−du

′
zu

′
r/dr dominate other contributions. Very close to the wall (1 − r)+ < 2, all the

terms in equation (4.1) are important except for the turbulent shear-stress curvature
term −u

′
zu

′
r/r . In particular, contribution from the viscous shear-stress curvature term

(ν/r)duz/dr is not negligible. However, this term is only important below (1−r)+ = 30.
Within the range of 30 < (1 − r)+ < 200 all the remaining four terms are important,
i.e. axial pressure gradient, gradient of viscous shear-stress, gradient of turbulent
shear-stress, and the turbulent shear-stress curvature term. Beyond (1 − r)+ = 200,
contribution from the gradient of viscous shear-stress becomes negligible and only
the remaining three terms are important. It is clear from figure 23 that the magnitude
of the turbulent shear-stress curvature term −u

′
zu

′
r/r is nearly the same as the

magnitude of the gradient of turbulent shear stress −du
′
zu

′
r/dr over most of the pipe

cross-section for (1 − r)+ > 200. This is to be expected because of the nearly linear
distribution of u

′
zu

′
r shown in figure 22. By (1 − r)+ = 200, all the terms appearing

in equation (4.1) have attained their corresponding asymptotic values, and there are
almost no further variations across the wide range of (1 − r)+ > 200. Again, this is
dictated by the viscous and turbulent shear-stress distributions in fully developed
turbulent pipe flow.

Budgets for the uz transport equation at ReD = 5300 are given in figure 24 and
the trends are qualitatively analogous to those at the higher Reynolds number. The
budget term results obtained from present DNS paint a more complicated picture
than assumed in some existing simplified models. The three budget terms appearing in
(4.2) for the radial momentum balance were also evaluated. The contribution from the

anisotropy curvature term −(u′2
r − u

′2
θ )/r is small for most of the pipe cross-section.

The transport equation for ur is balanced mostly by the radial gradient of mean
pressure and the gradient of turbulence fluctuations in the radial direction −du

′2
r /dr .
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(a) (b)

Figure 25. Visualization of the turbulent pipe flow over constant z plane using contours of
instantaneous uz. (a) ReD = 5300; (b) ReD =44 000. White represents higher values of uz.

5. Visualizations at ReD =5300 and ReD = 44 000

Given the canonical nature and fundamental importance of turbulent pipe flow,
it is interesting to note that there have been few published turbulent pipe flow
visualizations from either experiment or DNS. A case in point is van Dyke’s An
Album of Fluid Motion, in which the only pipe flow image is a repetition of Reynolds’
dye experiment for a transitional tube flow. Here we present a set of images extracted
from our DNS restart data files for the two Reynolds numbers, ReD =5300 and
ReD = 44 000. These images were produced in a straightforward manner by plotting
flooded contours of instantaneous axial velocity uz over selected surfaces of constant
coordinates in the cylindrical system. No other elaborate visualization or post-
processing procedures were used. At each Reynolds number the presented images
are at the same instant. Figure 25 compares the contours over a constant z plane
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(a)

(b)

Figure 26. Visualization of the turbulent pipe flow over constant θ plane using contours of
instantaneous uz. (a) ReD =5300; (b) ReD =44 000. Red represents higher values of uz.

at the two Reynolds numbers. A total of 160 grey scales were used in this figure
to represent the magnitude of uz from 0.6 (black) to 1.3 (white). The image at the
low Reynolds number exhibits large-scale bright-coloured high-momentum blobs and
dark-coloured low-momentum fluid lumps jigsawed along the azimuthal direction.
These structures occupy sizable regions over the (r, θ) cross-section and some of them
have a vague mushroom shape. As expected, the contours in figure 25 at ReD =44 000
exhibit much more fine-grain structures. The alternation of high- and low-momentum
fluid blobs are still visible but with reduced apparent coherence. It was found that
within a reasonable range the visualized structures do not depend upon the exact
threshold levels for the contours.

Figures 26 compares contours of uz over the constant θ plane at ReD = 5300 and
ReD = 44 000. The entire streamwise range of the computational domain 0 � z � 15
is included. At the lower Reynolds number there are wavy low-momentum fluid
structures inclined away from the wall towards the downstream direction. In the
pipe central region there are blobs of higher-speed wavy structures elongated along
the axial direction. The structures at ReD = 44 000 are less coherent in the figure.
Figures 27 and 28 present contours of uz over constant r surfaces at 1 − r = 0.01 and
0.1 for both Reynolds numbers. Only one out of every four adjacent grid points along
the streamwise z direction was used in producing the ReD =44 000 images shown in
these two figures. All the 1024 grid points along the θ direction are displayed. At
ReD = 5300 the two images for 1 − r =0.01 and 0.1 exhibit consistent footprints of
high-momentum structures elongated and twisted in the streamwise direction. The
coherence in the radial and azimuthal directions of these large-scale structures is
rather clear. It is very likely that these contour surfaces are signatures of the same
set of coherent structures. At the higher Reynolds number figure 27(b) reveals a
large number of worm-like elongated high-momentum structures with very narrow
azimuthal dimension. Streamwise dimensions of these elongated structures appear to
be less than those at ReD = 5300.

6. Correlations at ReD = 5300 and ReD = 44 000

One question in association with the comparison of visualization images
between ReD =5300 and ReD =44 000 in the previous section is that whether the
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(a)

(b)

Figure 27. Visualization of the turbulent pipe flow over the surface of 1 − r = 0.01
using contours of instantaneous uz. White represents higher values of uz. (a) ReD = 5300.
(b) ReD = 44 000.

non-dimensional extent of large structures has been reduced at the higher Reynolds
number or the apparent reduced coherence in absolute scale is just a simple
manifestation of scaling. This can be more fully addressed with two-point correlation
results.
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(a)

(b)

Figure 28. Visualization of the turbulent pipe flow over the surface of 1 − r = 0.1
using contours of instantaneous uz. Red represents higher values of uz. (a) ReD = 5300.
(b) ReD = 44 000.

The two-point correlation coefficient Ru
′
zu

′
z

as a function of streamwise separation

z − z
′
at five radial positions is shown in figure 29 for ReD = 5300 and in figure 30 for

ReD = 44 000, respectively. The results suggest a different dependence on 1 − r for the
two Reynolds numbers. At ReD = 5300 the correlation decreases with increasing radial
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Figure 29. Two-point correlation coefficient Ru
′
zu

′
z

at ReD = 5300 as a function of the

streamwise separation z − z′. Solid line: 1 − r =0.01; dotted line: 1 − r = 0.05; dashed line:
1 − r =0.1; chain-dotted line: 1 − r = 0.2; chain-dotted-dotted line: 1 − r = 0.5.
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Figure 30. Two-point correlation coefficient Ru′
zu

′
z

at ReD =44 000 as a function of the

streamwise separation z − z′. Solid line: 1 − r =0.01; dotted line: 1 − r = 0.05; dashed line:
1 − r =0.1; chain-dotted line: 1 − r = 0.2; chain-dotted-dotted line: 1 − r = 0.5.

distance from the wall. At ReD = 44 000 the correlation increases with the change of
radial position from 1 − r = 0.01 to 0.2. From 1 − r = 0.2 to 0.5, Ru

′
zu

′
z
decreases. Thus,

at ReD =5, 300 the two-point streamwise correlation Ru
′
zu

′
z
is largest inside the viscous

sublayer, but at ReD =44 000 it peaks outside the logarithmic layer. From the two
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Figure 31. Two-point correlation coefficient Ru
′
zu

′
z

at ReD = 5300 as a function of local

azimuthal separation [r(θ − θ
′
)]+. Solid line: 1 − r = 0.01 ((1 − r)+ = 1.81); dotted line:

1 − r = 0.05; dashed line: 1 − r = 0.1; chain-dotted line: 1 − r = 0.2; chain-dotted-dotted
line: 1 − r = 0.5.

figures it can also be seen that close to the wall at the radial station of 1 − r =0.01,
Ru

′
zu

′
z

drops to values close to zero starting from about 2R for ReD =44 000 and

about 6R for ReD = 5300. This is consistent with the images shown in figures 27 in
which the axial elongation of near-wall structure at the lower Reynolds number is
much prominent than at the higher Reynolds number. For both Reynolds numbers
away from the wall at the radial station of 1 − r = 0.5 the correlation coefficient
Ru

′
zu

′
z

drops to values close to zero for axial separations larger than approximately

4R. The streamwise extent of large-scale structures away from the wall in the core
region seems to be quite similar at ReD = 5300 and ReD = 44 000; see also figure 28.
Our visualizations and correlations suggest that at ReD = 5300 turbulent pipe flow
possesses large-scale, near-wall structures that are coherent over significant axial (8R

or larger) and radial dimensions (approximately 0.2R). These results also indicate
that the present computational domain length of 15R is adequate.

Variations of Ru′
zu

′
z

as a function of the azimuthal separation θ − θ
′
are shown in

figure 31 for ReD = 5300 and in figure 32 for ReD = 44 000, respectively. In both figures
the azimuthal separation θ − θ

′
is multiplied by the local radial coordinate r and

also converted into wall units. Note that at the higher Reynolds number R(θ − θ
′
)+

extends to 3588, but only results with separations less than 600 are shown for clarity.
For ReD =5300, the correlation at the radial station of (1 − r)+ = 9.05 attains its
first zero value at approximately r(θ − θ

′
)+ = 70. For ReD =44 000, Ru

′
zu

′
z
at the radial

station of (1 − r)+ = 11.4 attains its first zero at approximately r(θ − θ
′
)+ = 65. This

suggests that the drastic difference in azimuthal dimension of the near-wall structures
shown in figures 27(a) and figure 27(b) can be attributed mostly to Reynolds number
scaling. The curve for (1 − r)+ = 11.4 at the higher Reynolds number stays at values
close to zero for separations larger than 100 wall units. In contrast, the curve for
(1 − r)+ = 9.05 at the lower Reynolds number displays relatively large-amplitude
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Figure 32. Two-point correlation coefficient Ru′
zu

′
z

at ReD = 44 000 as a function of local

azimuthal separation [r(θ − θ
′
)]+. Solid line: 1 − r = 0.01 ((1 − r)+ = 11.4); dotted line:

1 − r = 0.05; dashed line: 1 − r = 0.1; chain-dotted line: 1 − r = 0.2; chain-dotted-dotted
line: 1 − r = 0.5. For clarity results for [r(θ − θ

′
)]+ > 600 are not shown.

wavy behaviour along the azimuthal direction with secondary peaks. This
demonstrates that the coupling or interdependence of the near-wall longitudinal
structures along the azimuthal direction is much stronger at ReD = 5, 300. Although
there is negligible negative peak at (1 − r)+ = 11.4 for the higher Reynolds number
in figure 32, away from the wall, however, Ru

′
zu

′
z
does display a set of deeper negative

peaks at larger values of 1 − r . This suggests a stronger coupling of the longitudinal
structures along the azimuthal direction in the outer region at ReD = 44 000. Figure 31
shows that for ReD =5300 the correlation at 1 − r = 0.5 descends to zero from high
value at approximately r(θ − θ

′
)+ = 110, which translates to an azimuthal scale of

r(θ − θ
′
) = 0.61. Figure 32 shows that for ReD = 44 000 the correlation at 1 − r = 0.5

descends to zero from high value at approximately r(θ − θ
′
)+ = 320, corresponding to

an azimuthal scale of r(θ − θ
′
) = 0.28.

Bailey et al. (2007) reported hot-wire measurements of Ru
′
zu

′
z
with azimuthal probe

separation in the Princeton Superpipe at four radial positions. They found that within
the logarithmic layer the azimuthal length scale in the pipe flow is similar to that
in a planar channel, but outside the logarithmic layer the azimuthal length scale
in the pipe flow is less than that in a channel flow. The two point correlations at
ReD = 5300 shown in figures 29 and 31 are consistent with previous low-Reynolds-
number channel flow results, (e.g. Moin & Kim 1982). At R+ = 180, Ru

′
zu

′
z

very near

the wall has a noticeably larger streamwise correlation distance z − z
′
compared to

that in the central region; Ru
′
zu

′
z
with spanwise (azimuthal) separation has a modestly

larger correlation distance in the core. For higher-Reynolds-number pipe flows the
streamwise coherence of the near-wall worm-like structures is less than the streamwise
coherence of the high-momentum elongated wavy structures in the core region, but
the trend of the radial variation is not monotonic.
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7. Summary
Our large-scale computation of the fully developed, incompressible turbulent flow

through at smooth pipe at ReD = 44 000 demonstrates that direct numerical simulation
has achieved a Reynolds number exceeding the lower limit used in the Princeton
Superpipe experiments as well as that used in the classical experiment of Lawn
(1971). Good agreement was obtained with the Princeton data on mean flow statistics,
and with Lawn’s data on turbulence intensities. This in turn makes it possible
for a less ambiguous connection to the on-going examination on mean pipe flow
characteristics.

Our calculated mean velocity gradient results at ReD = 44 000 suggest that the u+
z

profile fits well into a limited rather than extended power-type formula. The present
low-Reynolds-number results are not consistent with the theory advanced by Wosnik
et al. (2000). Furthermore, it was shown that the radial profile of du+

z /d(1 − r)+

consists of convex, concave, and convex curvature segments sequentially from the
wall. The logarithmic dependence of u+

z on (1 − r)+ at very low ReD may be
understood by considering the nature of these curvature segments in relation to the
concave hyperbolic curve const./(1 − r)+. Although differing substantially near the
wall, profiles of duz/d(1 − r) at ReD = 44 000 and at ReD = 5300 nearly collapse for
the central region of 0.4 < 1−r < 1. Consequently, mean velocity defect profiles within
the region of 5300 < ReD < 44 000 also collapse when normalized by the default unit
velocity scale ubulk.

We found that at ReD = 44 000 the axial turbulent intensity profile possesses one
near-wall knee point. The entire radial profile can be divided into three segments: a
near-wall peak region for 1 − r < 0.1, a nearly perfect linear variation of u

′

z,r.m.s. with

radius for 0.15 < 1 − r < 0.7, and an approximately constant u
′

z,r.m.s. for 1 − r > 0.9.
Existence of knee points may be a symptom of distinctly different structural zones in
the flow. Statistically, in equilibrium-wall-bounded turbulent flows, this is related to
the strong bending of near-wall mean velocity gradient.

Budgets of the mean velocity balance at ReD =44 000 show that only in a very
narrow range of approximately 12 wall units do the effects of viscous shear-stress
gradient and turbulent shear-stress gradient overwhelm other contributions. As a
result of the simple shear-stress profiles in turbulent pipe flow, beyond (1 − r)+ = 200
all terms in the mean axial momentum transport equation remain nearly unchanged.

Flow visualization images at ReD =5300 reveal large near-wall wavy streaky
structures that are quite coherent over the axial- ( > 8R) and radial- (> 0.2R)
directions. These streaks are also noticeably correlated with each other along the
azimuthal direction. At ReD = 44 000 the streamwise extent of these near-wall worm-
like streak structures is reduced, but when measured in wall units their azimuthal
dimension is still comparable to that at the lower Reynolds number. High-speed wavy
structures elongated along the axial direction are seen in the core region of the pipe,
and their streamwise and azimuthal dimensions do not change substantially with the
increase of Reynolds number from 5300 to 44 000.

The present numerical study at R+ = 1142 has only made a limited connection to the
on-going debate regarding mean pipe flow properties. A more substantial connection
may be achieved if the simulation Reynolds number can be pushed beyond R+ = 5000
since, according to the theory of Zagarola & Smits (1998), this is the lower threshold
for which there appears a logarithmic region in the inertial sublayer. We notice that
the highest Reτ achieved in channel flow DNS at present is the simulation of Hoyas &
Jiménez (2006) at Reτ = 2003. Assuming 600 grid points are clustered along the radial
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direction, we estimate the total number of grid points for the R+ = 5000 simulation
to be approximately 2.4 × 1010, about 40 times larger than the current grid size of
630 million. Given the fact that the present simulation was carried out on 1024
processors, the number of processors required for a R+ =5000 simulation should be
around 40 000. This is certainly achievable with the best of today’s technology.

The present computational results have been posted on the Stanford University
Center for Turbulence Research web site (http://ctr.stanford.edu) for public access.

The computer program used in this study was developed by the late Dr Charles D.
Pierce of the Center for Turbulence Research at Stanford. This work was supported by
the Department of Energy’s ASC Program, the Royal Military College of Canada New
Faculty Startup Fund, NSERC Discovery Grant, Department of Defense Academic
Research Program (ARP), and the Canada Research Chair Program. The simulations
were performed on the IBM terascale parallel machines at San Diego Supercomputing
Center. We also would like to thank Professor Javier Jimenez for his interest in this
work.
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